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For suitably defined large N, we express Feigenbaum's equation as a singular 
Schroder functional equation whose solution is obtained using a scaling ansatz. 
In the limit of infinite N certain self-consistency conditions on the scaled 
Schroder solution lead to an essentially singular solution of Feigenbaum's 
equation with a length scale factor of ~ --- 0.0333 and a limiting feigenvalue of 
6~ -~ 30.50, in agreement with Eckmann and Wittwer's value of c~ = 0.0333831... 
and their conjectured estimate of 6~ ~< 30. 

KEY WORDS:  Feigenbaum; large N; iteration; doubling transformation; 
universal; fixed point; feigenvalue. 

1. I N T R O D U C T I O N  

Feigenbaum's original discovery (l) of universal properties of maps on an 
interval stimulated interest in the functional equation 

T " f ( x )  =- ~ l f ( f ( ~ x ) )  = f ( x )  (1) 

This equation is sometimes referred to as the Cvitanovid-Feigenbaum (CF) 
equation, from which certain universal constants can be computed. 

Solutions of the CF equation can be thought of as fixed points of the 
doubling transformation T defined in Eq. (1) and acting on some 
appropriate space of functions. A convenient function space to consider (z) 
are maps f on the unit interval [0, 1 ] which decrease monotonically from 
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f ( 0 ) = l  to a minimum at some point 2-~e(0 ,1)  and then increase 
monotonically on [4 1,1] to f(1)=c~. Such functions, often called 
unimodular, are equivalent under topological conjugacy (2) to classes of 
functions considered by other authors/a) 

The action of T on unimodular functions having the form 

f N ( X ; ) . ) ~ ( 1 - - 2 X )  2N a s  x--*2 1 (2) 

in the neighborhood of their minimum is of particular interest. Iterates of 
such functions are known to undergo bifurcations through a cascade of 
U-cycles at values 2 = 2k which typically converge monotonically to a 
critical value 2c. (4) The rate of convergence 

2c--2k~6N k (3) 

is exponential and is governed by a universal c o n s t a n t  {~N o(1) This constant 
depends only on N, but with the proviso thatf~v(0; 2) is strictly negative/z) 
Typical values of (~U a r e  given in Table II. 

Fixed point functions f *  of T having the form (2) in the neighborhood 
of their minima are known to exist (5~ 9) and it is commonly believed that if 
2 is set equal to its appropriate critical value in any unimodular function 
fu, T~~ fx  will converge to f *  and, moreover, that the feigenvalue t~ N is the 
maximum eigenvalue of the linearization of T around f , . , -3 )  

While certain aspects of the "renormalization group" scheme can be 
made rigorous, ~5 9) it still remains to classify the universality classes of 
functions having the same 6N, or equivalently, to classify the basins of 
attraction of fixed point functions of T. Topological conjugates of the f* ,  at 
least for unimodular and perhaps analytic f* ,  seem to be prime candidates 
for universality classes, ~2) but as yet there is no proof. 

The existence and asymptotic behavior o f f* ,  and in particular their 
associated universal constants O N and ~ N = f * ( 1 )  as N ~  0% are of some 
interest and have been the subject of study by several authors. (8'10-14) 
Eckmann and Wittwer, (8) for example, have written a whole book on this 
question. They stress the possible relevance of this problem to other 
"large-N" problems in physics. 

From a numerical point of view the large-N problem for the CF 
equation is extremely delicate. The windows of stability of successive 
2k-cycles become prohibitively small, at least from a computational point 
of view, even for moderate N (of about 5 or so). In fact, it is not difficult to 
convince oneself from numerical evidence that I~ u diverges and a N con- 
verges to zero as N ~  oo. In their computer-aided proof, however, of the 
existence of a limiting fixed-point function of a functional transformation 
derived from (1), Eckmann and Wittwer ~8) assert that 0 u is bounded above 
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by about 30 and that c~N ~ 0.03338... as N-~ oo. This assertion is in conflict 
with recent work by Groeneveld, (~3) who obtained upper bounds on a N 
that converge to zero for particular nonanalytic solutions of the CF 
equation. 

Our aim here is to reexamine the large-N problem in the light of this 
conflict and in particular to study asymptotic and essentially singular 
solutions of (1) in the limit N ~ oo. We work directly with the CF equation 
rather than with the derived functional equations and transformations 
considered by Eckmann and Wittwer.(8) ~ 

In the following section we transform the CF equation into a Schroder 
functional equation, (~5) which becomes singular in the limit N ~  oe. A 
scaling ansatz is used to obtain asymptotic approximations to solutions of 
the singular Schroder equation. 

The scaled asymptotic solutions to the Schroder equation are then 
used in Section 3 to obtain asymptotic solutions to the CF equation for 
large N. In the limit N--* oo these solutions lead to a unimodular solution 
of the CF equation that has an essential singularity at its minimum. We 
find that the scaling ansatz and certain assumptions of analyticity imply 
that 0~ N must approach a nonzero limit as N ~  oo. There is no contradic- 
tion with Groeneveld's results, (13) however, since his particular solutions 
are nonanalytic. 

Numerical results presented in Section 4 agree with those obtained by 
Eckmann and Wittwer. (8) Our previously published algorithm for com- 
puting the feigenvalue 6 (2) from a fixed point function is used to obtain 
6oo-~ 30.50 for our solution, in agreement with Eckmann and Wittwer's 
conjecture of 6~ ~< 30. Our conclusions are summarized in the final section. 

2. SCALED A S Y M P T O T I C  S O L U T I O N  OF A S I N G U L A R  
S C H R O D E R  E Q U A T I O N  

In order to study asymptotic unimodular solutions of (1) that have the 
form (2) in the neighborhood of their minimum, we write 

f ( x ) =  [SN(X)] 2u, f(1) = ~N< 1 (4) 

in Eq. (1) and assume for simplicity that N is a positive integer. We 
can then assume without loss of generality that SN is strictly monotone 
decreasing on [0, 1], vanishes at some point bNE(0, 1), and takes the 
values SN(O)= 1 and 

S N ( 1 )  = -  exp (~NlOg c~N ) (5) 
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Substituting (4) into (1) and using (5), we easily obtain the Schroder 
functional equation for SN(X), 

SN(goN(X)) = (-- 1 + ~ )  SN(X) (6) 

where 

exp( log  ) = - > 0  (7) 

and 

goN(X) = [SN(O~NX)] 2N (8) 

Disregarding Eq. (8) and subscripts N for the moment, the problem 
posed by the Schroder equation (6) is: given ~ and a decreasing analytic 
function go on [0, 1] with go(0) = 1, find a decreasing analytic function S on 
[0, 1 ] such that 

s(go(x)) = ( -  1 + 1;2) S(x),  s (o)  = 1 (9) 

Granted the above conditions on go and S and assuming I; 2 • 1, certain 
other conditions follow. Thus, if b is the unique fixed point of go in [-0, 1-], 

go(b) = b, O < b <  1 (10) 

it follows on substituting x = b in (9) that 

S (b )=O (11) 

Also, if we differentiate (9) with respect to x and set x = b, it follows, since 
S'(b) is finite and nonzero, tha t  

go'(b) = - 1 + 1 ;  2 (12) 

Setting x = 0 in (9) gives in addition the boundary condition 

S (1 )=  - 1  +5 2 (13) 

There is an enormous literature on the above problem (15) and much is 
known for the case e ~ 0. In our situation, however, e given by (7) becomes 
arbitrarily small for large N (assuming here and henceforth that aN does 
not approach zero exponentially fast as N--* oe), so we are particularly 
interested in the asymptotic form of the solution as e ~ 0 +.  This is clearly 
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a singular limit, since when e= O the only solution to (9) satisfying the 
stated conditions is 

l 1 when O < _ x < b  

S ( x ) =  0 when x = b  (14) 

- 1  when b < x < < , l  

which is singular at b. 
As far as we are aware, the asymptotic behavior of solutions to the 

Schroder equation (9) for small e has not been treated in the literature. 
Familiarity with similar singular problems in critical phenomena, however, 
suggests the scaling ansatz 

S ( x )  = F(h(1 - x / b ) / ~ ) / F ( h ( 1  )/~J) (15) 

for solution as e ~ 0 + with A some scaling exponent and F and h analytic, 
monotone increasing, and satisfying 

F(0) =h(0)  = 0 (16) 

lim F ( x ) =  _1 (17) 

Expanding ~0 around its fixed point b and noting conditions (10) and 
(12), we have 

(p(x)= b + (e 2 -  1 ) ( x - b ) + � 8 9  . . .  (18) 

Also assuming h is analytic in some neighborhood of the origin, we can 
write, using (16), 

h ( x ) =  x + s x  2 +  t x  3 + u x  4 +  . . .  (19) 

Substituting (18) and (19) into (9) and (15) and matching terms 
requires a scaling exponent A = 1. Moreover, from (18) and (19) we have 

h(  1 - ~o(x) /b) /~  = y - A ~  - Be  2 - Ce 3 . . . .  (20) 

where in terms of the scaled variable y = [ ( x / b ) -  1J/e, 

A = (a  - s)  y2,  B = y + (c + 2as  - -  t )  y~ 
(21) 

C = y Z [ 2 s  + y 2 ( 2 c s  + 3a t  - a2s - u + d)] 

and 
b b 2 b 3 

a = -~ ~o"(b), ~ = --ff ~o"(b),  d . . . . . . .  = ~-~ q~ to) .... (22) 

822/51/5-6q7 
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and 

i.e., 

After some straightforward but tedious algebra we then obtain 

F(h(1 )/e)[S(~o(x))+ (1 - e  2) S(x)] 

= IF(y)  + F ( -  y)]  - e[Ar ' ( y )  - sy2F'( - y)]  

1 2 . + eZ[~A F (y) - BF'(y)  + �89 - y) - ty3F'( - y) - F( - y)]  

"q- O(~; 3 ) 

Equating coefficients of e ~ e, and ~2 to zero gives, respectively, 

F(y) = - F ( - -  y) 

s = a/2 

y[1 + (c + a 2) y2] F'(y)  = F(y) 

(23) 

(24) 

(25) 

(26) 

F(y) = Dy[1 + (c + a z) y2] -1/2 (27) 

where, in deriving (25) and (26), use has been made of (24), and of (24) 
and (25), respectively, and the constant D is arbitrary. 

It will be noted from (27) that (24) is satisfied afortiori and that (17) 
is also satisfied for the choice D = (c + a2) 1/2. 

Equation (23) then shows that with the choice s =  a/2 and F(y) given 
by (27), the function 

with D such that S~  1, satisfies the Schroder equation (9) with an 
error of order e 3. To this order we can reexpress (28) in the form 

82 -- 1/2 ( 82 1/2 

S ~  } ~l+(c+a2)[h(1)]2 } 

1 e2f(x) + O(e 4) when  

~- + ~2f(x) -~- O(~ 4) when 
O ~ x < b  

(29) 
b < x ~ l  

where 

{ 1 1 } 1 (30) 
f ( x ) =  [ h ( l _ x / b ) ]  2 [h(1)] ~ 2 ( c + a  2) 

The boundary condition (13) is then satisfied to leading order when 

f (1)  = 1 (31) 
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which may be viewed as an additional relation between the (unknown) 
coefficients t, u .... in the expansion (19) of h(x)  and (known) higher order 
derivatives of q)(x) EEq. (22)] at x = b. One could, for example, satisfy the 
Schroder equation to order e3 with a cubic form ( u = 0 )  for h(x)  by 
adjusting t to satisfy (31). 

The above asymptotic approximation can be systematically improved, 
but there appears to be no simple algorithm for determining the coefficients 
of h(x)  from the derivatives of ~0(x) at x = b. To next order, for example, 
the e3 term on the right-hand side of (23) is easily found to be 

A = - 3 a  Dy 2 e 3 { 1 + 1 [5c + 6t + 2a 2 + 2 ( d -  2u)/a] y2 } 

x {211 + ( c + a 2 ) y 2 ]  3/2} 1 (32) 

In terms of the original variable x = b(ey + 1) it is clear that this term is 
minimized and of order e 4 when the coefficient of y4 vanishes. That is, when 

u = (d+  a 3 "Jr- 3at + 5ac/2)/2 (33) 

In this case 
3 4 fX X~ [- fX ~ 7 -- 3/2' -~ae D~-l)2ke2+(c+a2)~-~--l)2j (34) 3= 

and it easily follows that 

SI(x)~a~ } ( 3 5 )  

is an asymptotic approximation to the solution of the Schroder equation 
(9) with error of order e 5. To this order we then have a quartic 
approximation to h(x), Eq. (19), with u given by (33), s by (25), and t 
again determined by the boundary condition (13) or (31). 

In the following section we use the above results to develop a large-N 
asymptotic solution to the CF equation. 

3. L A R G E - N  A S Y M P T O T I C  A N D  ESSENTIALLY S I N G U L A R  
S O L U T I O N S  TO THE CF E Q U A T I O N  

For large N the small parameter e of the previous section is given, 
from (7), by 

/~2 = 1 - -  e x p  log 0~ N 

1 
- ~-~ log CON -= e2 u (36) 



998 Thompson and MeGuire 

and the large-N asymptotic solution of the CF equation is given, from (4) 
and (28) (after normalization to unity at the origin), by 

f N(X) ~ [ S~ ] 2N 

e2+(c+aZ)[h(1)] 2 ~N~h(1-x/b)~ 2N 
=~eZ+(c+a2)[h(1-x /b)]2J  ~ h(1) J (37) 

The various coefficients a, c, etc., which are expressed in terms of the 
derivatives of q~N(X) at its fixed point, must now be determined self- 
consistently by the requirement, given from (8) and (28), that 

(~ON(X) ~ EsO(O~NX)] 2N (38) 

If we now assume, with Eckmann and Wittwer, (8) that a N --~ ~ :~ 0 and 
< b, we obtain from (29), (36), and (38) the asymptotic form 

q~N(X) ~ ~O(X) = exp[log ~f(~x)] (39) 

where f (x )  is given by (30). 
Furthermore, if we substitute the asymptotic form (29) into the 

Schroder equation (9) and note from our monotonicity assumption that 
~p(x) <> b when x X b, we obtain, using (39), the functional equation 

f (~o(x ) )=l+f (x )+O(~  2) for O<~x<~b (40) 

If we now multiply (40) by log e and make use again of (39), we recover in 
the limit N ~ ~ the CF equation 

F(F(ax)) = ~F(x) (41) 

where 

and from (30) 

F(x) = exp [log ~f(x)] (42) 

1 1 } 1 (43) 
f ( x ) =  [h( l_x /b)]  2 ~ 2(c+a2 ) 

Since our initial ansatz assumes that h(x) is analytic and monotonic 
increasing with h(0)=0,  it follows from (41)-(43) that our asymptotic 
solution of the Schroder equation yields a solution of the  CF equation that 
has an essential singularity at its minimum x-= b, i.e., 

F(n)(b) = 0 for all n = 0, 1, 2 .... (44) 
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The question of the existence of a finite limiting value of c~, granted our 
assumptions of analyticity, therefore depends on the existence of an essen- 
tially singular solution to the original CF equation. In the next section we 
provide numerical evidence for the existence of such a solution. Since our 
computed value of c~ turns out to be very close to the value obtained by 
Eckmann and Wittwer, (8) it may in fact be possible to interpret their results 
as a computer-aided "proof '  of the existence of an essentially singular 
solution to the CF equation. 

Finally, if we retain our assumption of analyticity and assume that in 
fact aN--*0 as N--* ~ ,  we obtain from (8) the result 

qo(x) = lim (1 - ~ v  IS~v(0)l X) 2N 
N ~ o o  

= exp( - K x )  (45) 

provided 

K =  lira 2Na  N tSN(0)I r  exists (46) 
N ~ o C  

However, for small x we have from (29) and (30) that 

S ( x )  ~ 1 - e~sxh'(1 )/(c + a 2) [h(1 )]3 (47) 

and hence from (36) that 

2Na  N ISN(O )I ~ (a N log aN) h'(1 )/(c -~- a2)[h(1 )]3 (48) 

It follows from (46) and (48) that if 0~ N ~ 0 ,  K =  0, so we reach a contradic- 
tion. We conclude that h cannot be analytic and hence that there can be no 
analytic solution of the CF equation that has a N ~ 0 "~-. There is no con- 
tradiction with Groeneveld's results,(13)however, since his class of solutions 
are nonanalytic. 

4. N U M E R I C A L  RESULTS 

4.1. ] 'he Fixed Point Funct ion 

In the preceding section we showed that the essentially singular 
function F given by (42) is a solution of the CF equation so long as 

(p(x) = F ( a x )  = exp[log a f (ax) ]  (49) 

with f given by (43), satisfies certain conditions. For example, (p(b)=b 
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l-Eq. (10)]  and ~0'(b)= - 1  [Eq.  (12)]  (in the limit N-- ,  oc) require, respec- 
tively, 

b = exp[ log  ~f(~b)]  (50) 

and 

ficients in turn must  be determined 
Eqs. (22), (25), (31), and (33). That  is, 

{ 1 1 } 1 
f ( x )  = [ h ( 1 - x / b ) ]  2 l-h(1)] 2 2 ( c + a  2) 

where 

h(x)  = x + �89 2 + tx 3 + UX 4 

a= �89 

= �89 - 3o&'/h + ah"/h') 

c = lb2 0'"(b) 

= 1{ _ 1 + 3(1 - 2a) - c~2[h'"/h ' -  9h"/h + 12(h'/h) 2] } 

= - [b log c~f'(eb)] -~ (51 ) 

In addition, the function f is given in terms of h, Eq. (43), whose coef- 
self-consistently from q~ through 

(52) 

(53)  

(54) 

(55) 

etc., with h(x)  and its derivatives h'(x).., evaluated at x = 1 - ~, u is given 
by (33), and t is to be determined from the boundary  condi t ion (31), i.e., 
from (42) 

F ( 1 ) =  c~ (56) 

It is also not  difficult to show from (56), assuming h is analytic and 
monotonic ,  that  there is a unique "solut ion" for c~ in the interval (0, 1). 

If we now start with the initial "guess" h ( x ) =  x we obtain, from (54) 
and (55), 

a= �89  - 4~)(1 -c~) -1, 2(c+a2)=I+�89  - c~)-I 2 (57) 

and then from (50) and (51) the equations 

b = e x p [ - � 8 9  - c~)(2 - 7) ]  (58) 
and 

log ~ = - ~(1 - cQ(1 - 2c~ + 4~ 2) (59) 

respectively, which have the solution 

c~ = 0.020, b = 0.379 (60) 
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Using the above as a guide, we next choose trial e, b, a, t, and u, com- 
pute a and c from (54) and (55), and readjust t to satisfy the boundary 
condition (56). We found using this procedure that a ~ 0 . 4 4  and 
2(c + a 2) ~ 0.168 are relatively insensitive to trial a and b, which were sub- 
sequently recomputed using the trial values of ~ and b in the right-hand 
side of (51) and (50), respectively. We also found by trial and error that to 
quartic order, a better fixed-point function solution to (41), of the form 
(42) and (43), which is accurate to within a few percent over the entire 
interval [0, 1 ], is obtained by "fine-tuning" t and u to satisfy (56) and the 
"second-order boundary condition" 

F(F(~)) = ~2 (6l)  

obtained from (41) by substituting x = I. 
The final results of our numerical analysis of the essentially singular 

solution to the CF equation are: 

= 0.0333 .... b =  0.3912... (62) 

with auxiliary parameters 

a = 0.435490, 2(c + a ~') = 0.168593 
(63) 

t = 0.2708, u = 0.12054 

The results for c~ and b in particular are in striking agreement with the 
Eckmann-Wittwer values ~8) of c~ = 0.033381... and b = 0.391133 .... 

4.2. Computa t ion  of  6 

In a previous publication (2) we derived an algorithm for the com- 
putation of ~5. In this algorithm the lth approximant to 6 is given by 

~5('~ = X,+ t/X,, l = O, 1 .... (64) 

where Xo = 1/f'(O), and 

2 l 1 

X,=ct ' ~ f(k~(O)/f(k)'(O) (65) 
k = l  

where f is a fixed point of the doubling transformation T, i.e., some 
solution to the CF equation, f~k~ denotes the k th iterate o f f ,  and f(k)' is its 
derivative. The algorithm in fact simply provides an efficient way of corn- 
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puting the largest eigenvalue of the linearization of T around f.  In the 
traditional parabolic case, N =  1 in Eq. (2), for example, we obtain 

(~(1)  ~ -  4.671, (~(2)  = 4.66922, 6 ~3) = 4.669204, 
(66) 

~(4) = 4.6692019 .... 

which is to be compared with the "exact value" of 61-- 4.6692016 .... 
For an "exact" fixed point function the 6 ~t) actually converge to the 

appropriate 6. In practice, however, where f is known only approximately, 
the 6 (~) typically behave like a standard asymptotic sequence, at first con- 
verging, but eventually diverging, the point of divergence depending on 
how accurately f is known. 

For large N the task of computing 6 N from numerical data obtained 
from bifurcating 2k-cycles becomes almost impossible. Moreover, in the 
limit N ~  ~ where we have to deal with functions having an essential 
singularity at their minimum it is virtually impossible to detect anything 
beyond a 4-cycle. In this situation one could even question the existence of 
the bifurcating 2k-cycle pattern. Our preference is to view the feigenvalue 6 
as a "divergence parameter" computed as the maximum eigenvalue of a 
linearized doubling transformation. 

For the approximate fixed point function F obtained above, the 
algorithm (64), (65) gives the asymptotic sequence 6~ for fio~= 
l imu~ o~ (~x:  

6~t~ -= 31.06, 30.40, 30.52, 30.97, 30.91, 

30.68, 2608.86 .... for l =  1, 2,..., 7, respectively (67) 

The divergence, it will be noted, is quite spectacular, but on the basis of 
previous experience with divergent asymptotic sequences we feel confident 
in predicting the estimate 

6~ = 30.50 _____ 0.6 (68) 

Table I. Values for  aN.= (aN) -1/2N Using Asympto t ic  
Estimates for  o N and Other  Numerical  M e t h o d s  

Asymptotic Numerical 
N estimate estimatet12 14) 

5 1.33 1.29 
50 1.034 1.0337 

100 1.0170 1.0173 
250 1.0068 1.0071 
500 1.0034 1.0035 
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This is certainly in accord with Eckmann and Wittwer's conjecture (s) of 
6~ <30.  

Further comments  and details on the algorithm (64), (65) are given in 
the Appendix. 

4 .3 .  L a r g e - N  E s t i m a t e s  

For  large N the asymptotic form of the fixed point function fN(X) is 
given, to leading order, by Eq. (37), where from (36) and the boundary 
condition (13), 

fx (1)  = [SN(1)] 2N 

( 1  )2N 
~ l+~-~ logc~  N ~ as N ~ o o  (69) 

That is, 

O~N~exp[2N(o: V2N- l ) ]  as N--* o(3 (70) 
Values for Cgv obtained from (70) and the estimate c~ = 0.0333 are given 

in Table I. For comparison we include numerical estimates obtained 
independently by other authors, where their scale factor a jr = (aN)-l/2U is 
related to ours through a topological conjugacyJ 2) 

We have also used the asymptotic form (37) and the algorithm (64), 
(65) to compute estimates for 6 N based on the numerical results given in 
Eqs. (62) and (63). The results for the first two asymptotic estimates 
obtained from (64) and (65) are given in Table II. 

Table II. Asymptotic Estimates for 6 N and Some Values Computed 
Numerically 

6N 
Numerical 

N Ref. 1 Ref. 2 value 1121 

1 5.39 4.53 4.67 
2 10.14 9.17 6.08 
5 18.24 17.22 12.30 

50 29.01 27.98 - -  
100 29.86 28.83 - -  
250 30.38 29.27 - -  
500 30.56 29.54 - -  

31.06 30.40 - -  
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5. S U M M A R Y  A N D  C O N C L U S I O N S  

In this paper we have investigated large-N asymptotic and essentially 
singular solutions to Feigenbaum's functional equation. 

For large N the problem can be expressed in terms of a singular 
Schroder functional equation whose general asymptotic solution was 
obtained using a scaling ansatz and certain monotonicity and analyticity 
assumptions. In the limit of infinite N we showed that certain self-con- 
sistency conditions on the Schroder asymptotic solution led to an essen- 
tially singular solution of the CF equation with a length scale factor of 
c~ ~0.0333. 

Our results are in accord with computer-aided proof results of 
Eckmann and Wittwer, (8) but in apparent conflict with recent results of 
Groeneveld, (13) who constructed particular solutions to the CF equation 
having length scale factors converging to zero. There is no contradiction, 
however, since our sequence of functions and those of Eckmann and 
Wittwer are analytic, whereas those of Groeneveld are nonanalytic. 

Parameter values for the infinite-N, essentially singular solution were 
used to obtain asymptotic solutions for large N from which asymptotic 
estimates for the length scale factors ~N and the feigenvalue •u were 
obtained. 

Our algorithm for computing (~U from the associated fixed point 
function is to be viewed as providing an asymptotic sequence of estimates 
for the largest eigenvalue of a linearized doubling transformation. In the 
limit N---)oe we find C~ N ~ C~oo ~ 30.50 ~ 0.6, which agrees with the conjec- 
ture of Eckmann and Wittwer. (8) 

It is to be stressed that there are severe numerical difficulties in com- 
puting 6 N from the occurrence of bifurcating 2~-cycles for large N. In the 
limiting case of functions with an essential singularity it is virtually 
impossible to distinguish anything beyond a 4-cycle. 

The question of universality classes, that is, the problem of classifying 
classes of functions that are attracted to particular solutions of the CF 
equation under the action of the doubling transformation (1), remains an 
interesting and open question. In this respect our essentially singular 
solution provides a particularly challenging problem. 

A P P E N D I X .  T H E  6 A L G O R I T H M  

The algorithm (64) for computing 6 involves iterates f(k) of the fixed 
point function f and their derivatives f~k), evaluated at the origin. 
Specifically the / th  approximant to 6 is given by 

6 (t)= Xt+ l/Xt (A1) 
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where 

and 

Xo = 1/ f ' (o)  

2 / -  1 

Xt = ~-i ~ f(k)(O)/f(k)'(O), l =  1, 2,... (A2) 
k=l 

The iterates f(k) are defined recursively by.~ 

f(k+i)(x)= f(k)(f(x)), f(~ (A3) 

where f is a fixed point of T, i.e., a solution of the Feigenbaum equation 

f(f(~x)) = ~f(x), f (0)  = 1 (A4) 

Differentiating (A3) and (A4) with respect to x, we have that 

f(k + 1)'(x ) = f(k)'(f(x)) f,(x) (a5) 

and 

f'(f(~x)) f'(~x) = f'(x) (A6) 

Setting x = 0 in (A6), for example, and assuming f ' ( 0 ) r  0, we deduce 
that f ' ( 1 ) =  1. Setting x =  1 in (A6) then gives 

f'(f(~))f'(~) = 1 (A7) 

Similarly, if we set x = 0 and x = 1 in (A4) we have 

f ( 1 ) = ~ ,  f ( f (~ ) )  = ~2 (A8) 

and so forth. Repeated use of (A4) and (A6) and (A5) allows us to simplify 
(A2) considerably. Using the above equations, we obtain, for example, 

1 3(0)=_ 

1/' . f (a )  5 ~5(1) = "  [k l+~z 

=~ t f - ~ +  ~-~+f,(~)f,(~f(~)))~l+~+f-;-~) 
(a9) 
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In general we have that 

where 

6(z)=l 1 + (A10) 

Z l + l  = Z l q -  ]~l, Z 1 = 1 ( A l l )  

Y~ is a sum of 2 t terms whose numerators are obtained from strings of 
Icds with either the identity function or f between successive ~'s. The 
corresponding denominator for each term is obtained by taking the 
product of derivatives off,  one for each f appearing in the numerator, and 
having the same argument. This construction is clearly seen in (A9) for 
l = 2. As a further i l lustration, when  l = 3, the terms in Y3 involv ing  two  f ' s  
and one identity are 

f(~f(a2))/f,(~f(a2)) f,(a2) 

f(aRf(a))/f'(a2f(~)) if(a) (A12) 

~f(~f(a) )/f'(af(a) ) if(a) 

The term involving three f ' s  is 

f(~f(af(a)))/f'(~f(af(~))) f'(~f(a)) f'(~) 

while the term involving no f ' s  is simply ~3, and so on. 
Expressed in this form, the algorithm can be easily programmed for a 

computer. As mentioned previously, however, the accuracy of the fixed 
point function imposes limits on how many times the algorithm can be 
applied. 
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